| Worksheet | 12.2 | | | |----------------|----------|----------|--| | Organic | reaction | pathways | | NAME: CLASS: ## INTRODUCTION This worksheet looks at two organic reaction pathways, and allows you to apply your knowledge of organic reactions to solve for 'unknown' compounds in these pathways. | No. | Question | Answer | |-----|---|--| | 1 | | eads to the production of organic compound G, propyl drawing structural formulas for compounds A to G, and compound in the boxes provided. H ⁺ (aq) G propyl ethanoate | | 2 | Describe a chemical test that could be used to distinguish between compounds A and D. | | | 3 | Describe a chemical test that could be used to distinguish between compounds C and G. | | ## Worksheet 12.2 Organic reaction pathways | No. | Question | Answer | |-----|--|--------| | 4 | Which compound, B or F, would be expected to have the higher boiling | | | | point? Explain your choice. | | Organic compounds H and I have the same molecular formula, C_4H_8 . Compound H is reacted with HCl(g) and a suitable catalyst. Two organic products, compounds J and K, are isolated. Compound J undergoes reaction with $OH^-(aq)$ to produce compound L. Compound L is oxidised to produce compound M. Compound M undergoes reaction with $Na_2CO_3(aq)$ to produce $CO_2(g)$. Compound I also reacts with HCl(g) and a suitable catalyst to produce a single organic product, compound K. In another reaction, compound I undergoes addition polymerisation to form organic compound N. ## **Worksheet 12.2: Solutions** ## **Organic reaction pathways** | No. | Answer | | | | |-----|---|--|--|--| | 1 | Compound A: ethene, CH ₂ CH ₂ Compound B: ethanol, CH ₃ CH ₂ OH Compound C: ethanoic acid, CH ₃ COOH Compound D: propane, CH ₃ CH ₂ CH ₃ Compound E: 1-chloropropane, CH ₃ CH ₂ CH ₂ Cl Compound F: propan-1-ol, CH ₃ CH ₂ CH ₂ OH Compound G: propyl ethanoate, CH ₃ COOCH ₂ CH ₂ CH ₃ | | | | | 2 | Test with bromine solution. Compound A (unsaturated) will decolourise bromine, while D (saturated) will not. | | | | | 3 | C is acidic and will produce a solution with pH less than 7. G is neither acidic nor basic; its solution will be neutral. | | | | | 4 | B and F belong to the primary alkanol homologous series. F is larger than B and so will have larger dispersion forces between molecules, leading to a higher boiling point. | | | | | 5 | Isomers | | | | | 6 | Compound L is an acid (i.e. contains an acidic functional group). | | | | | 7 | Compound H: but-1-ene, CH ₂ CHCH ₂ CH ₃ Compound I: but-2-ene, CH ₃ CHCHCH ₃ Compound J: 1-chlorobutane, CH ₃ CH ₂ CH ₂ CH ₂ Cl Compound K: 2-chlorobutane, CH ₃ CH(Cl)CH ₂ CH ₃ Compound L: butan-1-ol, CH ₃ CH ₂ CH ₂ CH ₂ OH Compound M: butanoic acid, CH ₃ CH ₂ CH ₂ COOH Compound N: polybut-2-ene,CHCH ₃ CHCH ₃ CHCH ₃ | | | |